

Differentiation of Single-Variable Functions

1. Definition: We say a function $f : (a, b) \rightarrow \mathbb{R}$ is differentiable at $x_0 \in (a, b)$ if $f'(x_0) = \lim_{h \rightarrow 0} \frac{f(x_0+h)-f(x_0)}{h}$ exists.

Notice $\lim_{h \rightarrow 0} \frac{f(x_0+h)-f(x_0)}{h} = L \iff \lim_{h \rightarrow 0} \frac{f(x_0+h)-f(x_0)-Lh}{h} = 0$. Rewrite with $x = x_0 + h$ yielding $\lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)-L(x-x_0)}{x-x_0} = 0$. Notice the linear function $f(x_0) + L(x - x_0)$ has a graph of $y = f(x_0) + L(x - x_0)$ which is a linear approximation. We define the error term $F(x) = f(x) - (f(x_0) + L(x - x_0))$. Then $\lim_{x \rightarrow x_0} \frac{F(x)}{x-x_0} = 0$.

2. Example: $f(x) = 1 + x + x^2$

2.1. $x_0 = 0$

Here $L = 1$ so our linear approx. is $1 + L(x - 0) = 1 + Lx = 1 + x$, then $F(x) = x^2$ and $\frac{x^2}{x} \rightarrow 0$ as $x \rightarrow 0$.

2.2. $x_0 = 1$

Here $L = 3$ so our linear approx. is $3 + L(x - 1) = 3 + 3x - 3 = 3x$, then $F(x) = 1 - 2x + x^2 = (x - 1)^2$, and $\frac{(x-1)^2}{x-1} \rightarrow 0$ as $x \rightarrow 1$.

3. Theorem: If f is differentiable at x_0 then f is continuous at x_0 .

3.3. Proof:

Notice $f(x) = f(x_0) + L(x - x_0) + F(x)$ and we know $\lim_{x \rightarrow x_0} \frac{F(x)}{x-x_0} = 0$, then $\lim_{x \rightarrow x_0} (f(x) - f(x_0)) = \lim_{x \rightarrow x_0} (L(x - x_0) + F(x)) = \lim_{x \rightarrow x_0} F(x) = \lim_{x \rightarrow x_0} \left(\frac{F(x)}{x-x_0} (x - x_0) \right)$.

.

4. Proposition: Assume f, g that are differentiable at x_0 , then

4.4. (a) $(\alpha f + g)'(x_0) = \alpha f'(x_0) + g'(x_0)$

4.5. (b) $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$

4.6. (c) $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

5. Theorem: Let $g : (c, d) \rightarrow (a, b)$, $x_0 \in (c, d)$, and $f : (a, b) \rightarrow \mathbb{R}$. Let $y_0 = g(x_0) \in (a, b)$. Assume g is diff. at x_0 and f is diff. at y_0 . Then $f \circ g$ is diff. at x_0 and $(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0)$.

5.7. Proof:

We have $f(y) = f(y_0) + L(y - y_0) + F(y)$, with $\lim_{y \rightarrow y_0} \frac{F(y)}{y - y_0} = 0$, and $g(x) = y_0 + (x - x_0) + G(x)$, with $\lim_{x \rightarrow x_0} \frac{G(x)}{x - x_0} = 0$, where $y_0 = g(x_0)$. We want to show $\lim_{x \rightarrow x_0} \frac{f(g(x)) - f(y_0) - L(x - x_0)}{x - x_0} = L$.

Consider $\frac{f(g(x)) - f(y_0) - L(x - x_0)}{x - x_0}$. Using the expansion of f at y_0 , $f(g(x)) - f(y_0) = L(g(x) - y_0) + F(g(x))$, so $f(g(x)) - f(y_0) - L(x - x_0) = L(g(x) - y_0 - (x - x_0)) + F(g(x))$. We expand g , $g(x) - y_0 - (x - x_0) = G(x)$, so the numerator is $F(g(x)) + L G(x)$. Dividing by $x - x_0$, $\frac{F(g(x))}{x - x_0} + L \frac{G(x)}{x - x_0}$. The second term goes to 0 since $\lim_{x \rightarrow x_0} \frac{G(x)}{x - x_0} = 0$. For the first term, we rewrite $\frac{F(g(x))}{x - x_0} = \frac{F(g(x))}{g(x) - y_0} \cdot \frac{g(x) - y_0}{x - x_0}$. As $x \rightarrow x_0$, we have $g(x) \rightarrow y_0$, so $\frac{F(g(x))}{g(x) - y_0} \rightarrow 0$ and $\frac{g(x) - y_0}{x - x_0} = + \frac{G(x)}{x - x_0} \rightarrow 0$.

Thus $\lim_{x \rightarrow x_0} \frac{F(g(x))}{x - x_0} = 0$ and so $\lim_{x \rightarrow x_0} \frac{f(g(x)) - f(y_0) - L(x - x_0)}{x - x_0} = 0$. This implies $\lim_{x \rightarrow x_0} \frac{f(g(x)) - f(y_0)}{x - x_0} = L$, so $f \circ g$ is differentiable at x_0 and in particular $(f \circ g)'(x_0) = f'(y_0)g'(x_0)$.